
Trees on spam

Introduction to Machine Learning (CSCI 1950-F), Summer 2011

In these exercises, you will implement a decision tree classification algorithm, and evaluate its per-
formance in classifying spam e-mails. We will use the “spambase” dataset from the UCI repository:
you can visit http://archive.ics.uci.edu/ml/datasets/Spambase to understand how the data
has been preprocessed and what each dimension of the input points represents. These instructions
(this file) can be downloaded from the course website http://www.dam.brown.edu/people/jmiller/ML
along with code and data for use in the exercises below.

(1) Implementation

The Matlab script main.m reads in the dataset and calls the (incomplete) function tree_build.m

to construct a classification tree using the CART approach. Your task is to fill in the missing
details in tree_build.m. The missing steps involved computing the “error measure” or “impurity”
associated with a given split. Of the three commonly used such measures (misclassification rate,
entropy, Gini index), your implementation should use the misclassification rate. Print out and
submit the code you added to tree_build.m. (Do not submit the whole file, just submit the part
you wrote.)

Feel free to modify the m-files (e.g. by using fprintf to display various quantities, etc.) in order to
understand how they work and get your code working correctly. (For example, there is a line in
tree_build.m you can uncomment to display the number of points with each call of the function.
Also, you can play around with the number of data points n and minimum_count. You can visualize
the resulting classification tree by enabling the last snippet of code in main.m.) However, once your
code is working, for the exercises below you should use the original files (with your modifications
to compute the impurity in tree_build.m).

(2) Evaluate the performance

Run the script main.m to evaluate the performance. It uses randomly selected training data sets,
over a range of values for the minimum_count parameter. Print out and submit the results computed
by running main.m, along with your answers to the following questions. How does the training
performance change as minimum_count varies over this range? How does the test performance
change? Can you explain why the training performance and test performance behave this way?

1



(3) Analyze the computational complexity

Big O notation: For a function f of x1, . . . , xk, we say that an algorithm “takes O(f(x1, . . . , xk))
time” if there exist constants c and d such that whenever xi > d for all i = 1, . . . , k, the algorithm
runs in no more than cf(x1, . . . , xk) units of time.

(See http://en.wikipedia.org/wiki/Big_O_notation#Multiple_variables .)

Let n be the number of training example points, and let d be the number of dimensions. For this
implementation of the algorithm, what is the time required (in terms of n and d) to choose the
optimal split for the first node? (State your answer in terms of “big O notation”: for example,
O(n3d4 log d).) You can assume that sorting n numbers takes O(n log n) time. Your answer should
be theoretically-based, rather than empirically-based.

Challenge problem

This problem is just for fun. You don’t need to turn in a solution — it is optional and will not be
graded.

Can you find an upper bound for the total time required to build the tree using this implementation
of the algorithm? Would you expect it to take about this much time on average, or would it typically
be much less? Why?

Can you think of a more efficient way to implement the algorithm?

Can you find an upper bound for the total time required to classify a new point?

How does the computational complexity of training (building the tree) and testing (classifying a
new point) compare with the k nearest neighbor algorithm?

2


